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Abstract Diabetes is known to be one of common 
causes for several types of peripheral nerve damage. 
Diabetic neuropathy (DN) is a significant 
complication lowering the quality of life that can be 
frequently found in diabetes patients.  
In this study, the metabolomic characteristic of DN 
and Diabetes was investigated with NMR 
spectroscopy. The sera samples were collected from 
DN patients, Diabetes patients, and healthy 
volunteers. Based on the pair-wise comparison, three 
metabolites were found to be noticeable: glucose, 
obviously, was upregulated both in DN patients 
(DNP) and Diabetes. Citrate is also increased in both 
diseases. However, the dietary nutrient and 
biosynthesized metabolite from glucose, ascorbate, 
was elevated only in DNP, compared to healthy 
control. The multivariate model of OPLS-DA clearly 
showed the group separation between healthy 
control-DNP and healthy control-Diabetes. The most 
significant metabolites that contributed the group 
separation included glucose, citrate, ascorbate, and 
lactate. Lactate did not show the statistical 
significance of change in t-test while it tends to 
down-regulated both in DNP and Diabetes. We also 
conducted the ROC curve analysis to make a 
multivariate model for discrimination of healthy 

control and diseases with the identified three 
metabolites. As a result, the discrimination model 
between healthy control and DNP (or Diabetes) was 
successful while the model between DNP and 
Diabetes was not satisfactory for discrimination. In 
addition, multiple combinations of lactate and citrate 
in the OPLS-DA model of healthy control and 
diabetes group (DNP + Diabetes patients) gave good 
ROC value of 0.952, which imply these two 
metabolites could be used for diagnosis of Diabetes 
without glucose information.  
 
Keywords Diabetic neuropathy, diabetes, 
metabolomics, NMR 
 
 
Introduction 
 
Diabetes mellitus (DM) is a metabolic disease with 
high blood sugar level and is well known to cause 
multiple complications. Diabetes is especially known 
to be one of common causes for several types of 
peripheral nerve damage. The peripheral neuropathy 
is characterized by muscle weakness with abnormal 
sensation such as tingling and numbness and 
sometimes can cause severe pains. The uncontrolled 
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neuropathic pains in diabetic patients significantly 
reduce the quality of life.  
This disabling state frequently begins from the distal 
part of peripheral nerve including hands and feet and 
develops towards thigh, hips, and torso. This 
'stocking-glove' neuropathy is the most representative 
among the various types of neuropathy caused by 
diabetes mellitus and called as diabetic neuropathy 
(DN). Interestingly, rigorous control of glucose level 
in type 1 diabetes reduce the DN occurrence while is 
less effective in type 2 diabetes, which imply the 
different physiology may play in the different type of 
diabetes.   
Until now, the pathophysiological mechanism of DN 
has been studied extensively but only several 
potential causes for DN including the altered 
pathway of advanced glycation end-products (AGE), 
poly (ADP-ribose) polymerase (PARP), protein 
kinase C (PKC) and so on were suggested. All these 
variations result in inflammation and oxidative stress 
on the nervous system. However, the specific and 
preventive treatment for DN except for 
symptom-relief medication has not been found yet.  
In this study, we aimed to identify metabolic 
characteristic of DN patient and diabetes patients to 
figure out the metabolic relationship between 
diseases by the NMR-based study. We monitored the 
quantitative alteration of serum metabolites in both 
diseases and compared the several metabolites with 
the healthy controls. The statistical analysis of NMR 
metabolites showed some fluctuation of metabolites 
and the ROC curve analysis showed the probable 
model of discrimination between diabetes and 
controls. 
 
 
Experimental Methods 
 
Patients- Twenty-one type 2 diabetic patients with or 
without symptoms of neuropathy (11 diabetic 
neuropathic patients and 10 diabetic patients) and ten 
healthy control subjects were enrolled in the study. 
Diabetic neuropathy was diagnosed based on the 
clinical symptoms, physical examination, and nerve 
conduction study. Severity of pain and neuropathy 

was assessed by a self-administered questionnaire of 
the Neuropathic Pain Scale (NPS, 10-item) and the 
Michigan Neuropathy Screening Instrument (MNSI, 
15-item).1,2 Physical assessment was also performed 
according to the MNSI examination that includes 
inspection and assessment of vibratory sensation and 
ankle reflexes.2 Nerve conductions were studied in 
four motor nerves (median, ulnar, tibial, and peroneal 
nerve) and three sensory nerves (median, ulnar, and 
sural nerve) in the ipsilateral upper and lower 
extremity. Serum lipid profile (total cholesterol, 
triglycerides, high-density lipoprotein cholesterol, 
and low-density lipoprotein cholesterol), glycated 
hemoglobin, serum blood urea nitrogen, and serum 
creatinine were measure in all patients and healthy 
control subjects. This study was approved by the 
local committee of Institutional Review Board (IRB 
number: GAIRB2015-33) and all the subjects gave 
written informed consent. 
 
NMR sample preparation - Blood samples (10 ml) 
were collected and all blood was drawn by the same 
operator. Whole blood was centrifuged at 12,000ｘg 
for 10 minutes and supernatant was removed. Serum 
was collected in serum-separator tubes and stored at 
-80℃ until NMR test. The 400 ul serum aliquots of 
healthy controls and patients were mixed with the 
100 ul stock solution of NMR buffer containing 550 
mM sodium phosphate buffer. The final NMR 
samples contained 100 mM sodium phosphate buffer 
(pH 7.0), 2 mM of trimethylsilyl-propanoic acid 
(TSP) and 10% D2O. To analyze the metabolites, 1D 
Carr-Purcell-Meiboom-Gill (CPMG) NMR spectra 
(cpmgpr1d) were obtained at 298 K on a Bruker 
ASCENDⅢ 600 spectrometer equipped with a 
cryoprobe.3 The CPMG pulse sequence generated 
spectra edited by T2 relaxation times, reducing broad 
resonances from high molecular weight compounds, 
improving the observation of low molecular weight 
metabolites. The water signal was removed by a 
presaturation method using low-power irradiation on 
the water resonance. 1H-NMR spectrum for each 
sample consisted of 128 scans with following 
parameters: spectral width = 12019.2 Hz, spectral 
size = 65,536 points, pulse width (90) = 13.2 μs and 
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relaxation delay (RD) = 2.0 s. Each free induction 
decay (FID) was zero-filled to 64,000 points and 
transformed with line broadening (LB) = 0.3 Hz. 
 
Spectral processing and metabolite identification - 
Initially, 1H NMR spectra were manually phased and 
baseline corrected using Bruker Topspin 3.2 software 
(Bruker GmbH, Karlsruhe, Germany) and referenced 
to TSP at 0.0 ppm. The post-processing baseline 
correction was conducted with Mnova (Mestrelab 
Research, Santiago, Spain). In each spectrum, the 
algorithm of multipoint baseline correction was used 
for building the baseline model. Because the NMR 
spectral bins of each spectrum can be easily 
influenced by small change of pH and/or ionic 
strength and the broad bin size consisting of more 
than one resonance often makes the result difficult to 
interpret, the peak alignment using segment and 
pair-wise peak alignment by Mnova was applied 
before binning. In addition, a variable bin size 
ranging from 0.005 ppm to 0.09 ppm was used so 
that each single bin contains single metabolic 
information as much as possible. The 1H NMR 
spectra were segmented into variable-sized spectral 
regions (bins) between 0.94 and 8.48 ppm. The 
chemical shift region of 4.69-5.20 ppm containing 
residual water was excluded. The lipid or protein 
contaminated region (1.10-1.33, 1.52-1.68, 1.78-1.90 
and 5.28-5.70 ppm) was also removed from the 
spectra to clarify the contribution of metabolites.4 
The integrated bins were used as the variables for 
statistics. The assignment of bins was achieved using 
Chenomx NMR suite 7.7 (Chenomx Inc., Edmonton, 
Canada) and evaluated in 1H-13C HSQC and 2D 
1H-1H TOCSY spectra. 
 
Statistical analysis - The statistical analysis was 
carried out using the SIMCA 15 (Umetrics, Umea, 
Sweden).5 and SPSS 23 (SPSS, Inc., an IBM 
Company, Chicago, Illinois, USA). The spectra were 
classified into controls and clinically diagnosed case 
subjects (diabetic neuropathy and diabetes). The 
integrated bins were normalized using probabilistic 
quotient normalization (PQN) algorithm to facilitate 
comparison of samples. In order to provide a 

reasonable balance of contributions from high and 
low amplitude signals, the spectral integrals (bins) 
were scaled by the procedure called pareto-scaling: 
each variable is mean-centered and divided by the 
square root of the standard deviation.6,7   
 
The multivariate analysis was performed as follows. 
To clarify the separation between groups, bin data 
were processed using a supervised pattern 
recognition method, orthogonal partial least squares 
discriminant analysis (OPLS-DA).8,9 The S-plot is an 
easy method to visualize significant features 
(variables) of an OPLS-DA model of two classes. 
The metabolites affected with the group separations 
were identified by the corresponding S-plot, in which 
each point represented a single bin data. The axes 
plotted in the S-plot from the predictive component 
are the covariance p[1] against the correlation 
p(corr)[1], representing the magnitude (modeled 
covariation) and reliability (modeled correlation), 
respectively.10 The efficiency and reliability of 
OPLS-DA models was validated using 500-random 
permutation test.11 The quality of the models is 
described by R2 and Q2 values. R2 is defined as the 
proportion of variance in the data explained by the 
models and indicates goodness of fit, and Q2 is 
defined as the proportion of variance in the data 
predictable by the model and indicates 
predictability.12 Corresponding Mahalanobis p-values 
for PCA and OPLS-DA score plots were calculated 
with PCA/PLS-DA utilities to determine the 
statistical significance of group separation in the 
OPLS-DA score plots.13 An observed p-value of 0.05 
was used to identify statistically significant group 
separation. The OPLS-DA models were further 
characterized by their p-values obtained from 
CV-ANOVA (Analysis Of Variance testing of 
Cross-Validated predictive residuals) implemented in 
SIMCA 15.14 
 
Univariate analysis was also performed to identify 
how significantly each bin affects the difference 
between groups. The Kruskal-wallis test 
(non-parametric analysis) was used for the 
comparative analysis.15 For the multiple testing 
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correction, acquired p-values were adjusted using 
Benjamini and Hochberg False Discovery Rate 
(FDR) method.16 
The significant metabolites used for biomarker 
analyses for a single or multiple biomarkers based on 

the ROC curve. ROC analysis was performed to 
evaluate the values of different metabolites for 
disease discrimination by assessing the area under the 
ROC curve (AUC), the true positive rate (sensitivity), 
and the false positive rate (1-specificity).17 The 

Table 1. Demographic and clinical characteristics of the patients 

 Healthy control (HC) Diabetic neuropathic 
patient (DNP) Diabetic patient (D) 

Number of patients 10 11 10 
Number of male (n, %) 3, 30% 5, 45.5% 7, 70% 

Age (years) 61.9 / 17.2 (51.5-83) 64.4 / 9.6 (46-78) 65.5 / 9.2 (55-84) 
Disease duration 

(years) NA 13.0 / 10.0 (3-30) 7.1 / 5.6 (1-20) 

BMI (kg/m2) 25.0 / 3.8 (19.1-31.2) 22.9 / 3.1 (18.2-27.3) 25.8 / 3.8 (21.1-32.6) 
HbA1c (%) 5.5 / 0.2 (5.2-5.8) 7.1 / 1.6 (5.7-11.2) 7.6 / 2.0 (5.4-12.5) 
TC (mg/dL) 183.6 / 24.1 (134.0-214.0) 175.0 / 38.9 (115.0-228.0) 139.3 / 34.6 (84.0-192.0) 
TG (mg/dL) 207.0 / 170.4 (58.0-657.0) 230.0 / 134.6 (83.0-443.0) 128.8 / 45.2 (69.0-185.0) 

HDL (mg/dL) 50.3 / 9.9 (37.0-68.0) 42.3 / 13.8 (32.0-81.0) 41.5 / 10.8 (33.0-65.0) 
LDL (mg/dL) 114.5 / 27.1 (68.0-167.0) 88.1 / 36.3 (34.0-140.0) 80.9 / 28.9 (32.0-124.0) 
BUN (mg/dL) 19.8 / 4.7 (12.8-27.1) 18.6 / 9.1 (9.0-40.5) 15.2 / 7.4 (7.3-31.3) 
Cr (mg/dL) 0.7 / 0.2 (0.5-1.1) 0.8 /0.3 (0.4-1.7) 0.9 /0.4 (0.5-2.0) 

NPS NA 32.2 / 17.4 (9-65) 0 
MNSIq NA 4.5 / 2.4 (0-8) 0.7 / 1.2 (0-3) 
MNSIp NA 2.8 / 1.7 (0-5) 1.7 / 1.5 (0-4.5) 

Continuous variables were presented as mean / standard deviation (range). 
BMI, Body mass index; HbA1c, Glycosylated hemoglobin; TC, Total cholesterol; TG, Triglycerides; HDL, 
High-density lipoprotein cholesterol; LDL, Low-density lipoprotein cholesterol; BUN, Blood urea nitrogen; Cr, 
Creatinine; NPS, Neuropathic Pain Scale; MNSIq, Michigan Neuropathy Screening Instrument questionnaire; MNSIp, 
Michigan Neuropathy Screening Instrument physical examination; NA, Not applicable. 
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algorithm for ROC curve calculation of multivariate 
biomarker was based on OPLS-DA algorithm. ROC 
curves were generated using 7-fold internal cross 
validated predicted y-values from OPLS-DA model 
in the SIMCA program (Ver. 15). It is important to 
find the most appropriate combination of metabolites 
which can produce an effective prediction power. 
The potential biomarker candidates were selected 
based on the contribution to classification between 
groups based on values of variable importance in 
project (VIP) of all variables and the results of 
univariate analysis. The VIP value of each variable in 
the model was calculated to indicate its contribution 
the separation. A higher VIP value represents a 
stronger contribution to classification between groups.18 

 
 
Results and Discussion 
 
Metabolic features between healthy people and DN 
(or Diabetes) patients: multivariate- and 
univariate-analysis - We obtained serum samples and 

clinical data from 10 healthy controls (HC) 11 
diabetic neuropathic patients (DNP) and 10 diabetic 
patients (D). Demographic and clinical characteristics 
are summarized in Table 1. There were no significant 
differences in age, sex ratio, body mass index, and 
blood test results between groups, except score of 
NPS and MNSI questionnaire between diabetic 
patients with or without symptoms of neuropathy.  
OPLS-DA was used as a supervised statistical 
method to clarify the separation between groups. The 
2D score plot of OPLS-DA of healthy 
control-diabetic neuropathy and healthy 
control-diabetes are shown, respectively (Fig. 1). 
Each model showed a clear separation of two groups 
along the components with predictive abilities (R2 = 
0.983, Q2 = 0.745 and R2 = 0.984, Q2 = 0.843) and 
p-value of CV-ANOVA (0.025 and 0.002). All 
observed R2 and Q2 values of OPLS-DA model were 
higher than those of the permuted test, revealing 
predictability and goodness of fit. The Mahalanobis 
p-value between two groups in each OPLS-DA score 
plot were 3.0583e-10 and 1.3211e-14 respectively.  

 
 
Fig 1. OPLS-DA model for two group comparison. The OPLS-DA models of two group comparison are shown in 
A (healthy control- Diabetic neuropathy) and B (healthy control-diabetes). The 95 % confidence ellipse of the group 
is depicted. The circle in the score plot represents the healthy control sample and the square represents the diabetic 
neuropathy (A) and diabetes (B), respectively. The values of R2Y, Q2 and p-value of CV-ANOVA were 0.983, 0.745 
and 0.025 (A) and 0.984, 0.843 and 0.002 (B). The Mahalanobis p-values for two group comparison were 3.0583e-10 
and 1.3211e-14 respectively (A and B). 
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To further evaluate the statistical capability of the 
metabolites to differentiate between groups, means of 
metabolite bins were compared as explained in the 
material and methods. Table 2 shows the result of 
univariate analysis, that is, the non-parametric 
Kruskal-Wallis test among healthy control, diabetic 
neuropathy and diabetes. The bin table created for the 
multivariate analysis was used as input variable for 
calculating p-value and adjusted p-value was 
calculated by Bonferroni’s correction.19 Null 
hypotheses of no difference were rejected if the 
adjusted p-values by Benjamini and Hochberg FDR 

were less than 0.05. As a result, three metabolites 
listed in the Table 2 showed significant difference 
between groups. Two metabolites of glucose and 
citrate were higher in the DNP and D group 
compared to the HC group. The ascorbate was 
significant only for HC-DNP comparison. Moreover, 
lactate affected group separation in the OPLS-DA 
model seemingly tends to be down-regulated in HC, 
while it did not meet the FDR cutoff value. We also 
performed the univariate analysis between DNP and 
D group, but we could not find any significant 
metabolites in the comparison. 

 

 
 
Fig 2. Box and Whisker plots of metabolites with significant difference. Box and whisker plots of four metabolites 
are illustrated (HC, healthy control; DNP, Diabetic neuropathic patient; D, Diabetic patient). Lactate is not statistically 
significant but affecting group separation. The groups of which the comparison was identified as significant are linked 
with lines. The horizontal line in the middle portion of the box is median value. The bottom and top boundaries of boxes 
represent lower and upper quartile. The open circles represent outliers. 

Table 2. Statistical analysis of the non-parametric Kruskal-Wallis test 

Assigned 
metabolite 

Chemical 
Shift 

(ppm) 
Multiple comparison      
(adjusted p-value*) FDR*** Metabolic change**** 

DNP D 

Glucose 
3.53 (m) 
3.57 (dd) 
3.87 (m) 
4.68 (d) 

HC-DNP** (<0.001) 
HC-D (0.002) <0.05 

0.024 Δ Δ 

Ascorbate 4.53 (d) HC-DNP (<0.001) <0.05 Δ ᅳ 

Citrate 2.70 (d) 
2.56 (d) 

HC-DNP (0.007), 
HC-D (0.007) 

HC-DNP (0.006), 
HC-D (0.006) 

0.038, 0.029 
0.036, 0.026 Δ Δ 

* Adjusted p-value was calculated by Bonferroni’s correction. 
** HC, healthy control; DNP, Diabetic neuropathic patient; D, Diabetic patient 
*** FDR was calculated by Benjamini-Hochberg method. 
**** Compared to the values of healthy controls, Δ indicates increase and ᅳ indicates no significant change. 
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Box and whisker plots of three statistical significant 
metabolites (glucose, citrate and ascorbate) and 
lactate, contributing to group separation, were 
illustrated (Fig. 2). The groups of which the 
comparison was identified as significant are linked 
with lines.The most significant contribution of 
metabolites for group separation were glucose, 
lactate and citrate as shown in the S-plot of the 
OPLS-DA model (Fig. 3).  
 
A potential single or multiple biomarkers based on 
ROC curve - We explored the discriminant 
candidates of metabolites that separate each disease 
group (DNP + D) against control group using ROC 
curve analysis. Glucose was excluded in ROC 
analysis because the DNP and D group had also 
diabetes. The optimal number and composite of 
biomarkers was determined by monitoring AUC 
values obtained from the OPLS-DA and results from 
univariate analysis.  

 

 
Fig 3. The S-plot from OPLS-DA model between two groups of healthy control-diabetic neuropathy group (A) and 
healthy control-diabetes group (B). The S-plot between two groups of healthy control-diabetic neuropathy group (A) 
and healthy control-diabetes group (B) from OPLS-DA are shown and metabolites that were highly contributed to the 
group separation are depicted on the plots. The important metabolites (p < 0.05, FDR <0.05) with the strongest 
association to disease are depicted on the S-plot. Lactate was also depicted because it contributed group separation, 
although it was not significant in univariate analysis. 

 
Fig 4. The ROC curve analysis for two composite 
metabolites (lactate and citrate). The AUC values were 
obtained from OPLS-DA models of healthy control – 
diabetic group (diabetic neuropathy + diabetes) with 
combination of metabolites. All NMR signals of glucose 
were not included in the metabolite list to remove the 
effect of glucose signal on the discrimination. The 
combination of two metabolites in the group comparison 
of healthy control – diabetic group (diabetic neuropathy + 
diabetes) provided the AUC value, 0.952. 
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The potential biomarker candidates for diabetes 
discrimination were lactate and citrate that showed 
the highest VIP value (2.7 and 1.5) in the model. The 
AUC values of these two metabolites (lactate and 
citrate) were 0.738 and 0.904, respectively. Based on 
this result, the potential model was constructed with 
two metabolites including lactate and citrate. The 
AUC of 0.952 can be obtained with the combination 
of these two metabolites (Fig. 4). The results of ROC 
curve analysis using OPLS-DA algorithm may 
suggest that the combination use of metabolites 
provide a useful tool to distinguish patients group 
(DNP+D) from healthy control without the 
information of serum glucose level. The 
discrimination model between healthy control and 
DNP (or Diabetes) was successful while 
discrimination between DNP and Diabetes was not 
successful. The failure in making a good model for 
discrimination of DNP and Diabetes may result from 

the small number of metabolite features. In other 
words, more biomarkers should be added to the 
model for clear separation. 
 
The metabolite identification in NMR spectra- The 
metabolites were basically identified in the 1D 
spectrum (Fig.5). The metabolite, glucose usually 
shows multiple proton peaks around 3.5 ppm and 
resultantly has multiple bins in the metabolite panel. 
The lactate shows unique peaks at 4.1ppm and 1.3 
ppm, which are generally strong in intensity. The 
proton signals from L-ascorbate is highly overlapped 
in 3.5~4 ppm with other molecules while the double 
peaks at 4.5 ppm clearly show the 4H in the furan 
ring. Citrate was easily identified with doublet peaks 
positioned at 2.5 ppm and 2.6 ppm. As shown in 
Fig.5 the original nmr spectra which are not 
normalized yet showed the increase level of glucose, 
citrate, and ascorbate in DNP and Diabetes compared 

 
Fig 5. Three representative 1H NMR spectra from the serum samples of healthy control (A), diabetic neuropathy 
(B) and diabetic group (C). 1H CPMG spectra were processed using Mnova 10.0.20 Statistically significant 
metabolites (ascorbate, glucose, and citrate) were labeled on the spectrum. Lactate was also labeled because it 
contributed group separation. The enlarged spectra for ascorbate, citrate, glucose and lactate are depicted in the figure.  
The black line in the enlarged figure represent the spectra of healthy control group, the red line represents the spectra of 
diabetic neuropathy group and the blue line represent the spectra of diabetic group. 
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to the healthy group while lactate was vice versa. The 
interference of intrinsic lipid signals from blood was 

not significant for identification and quantification of 
the described metabolites.      
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